Scientists at The European Organization for Nuclear Research, known as CERN, announced yesterday that they’re even more certain than they were last summer (like, more than 99.999999999% sure) they’ve seen a Higgs boson particle—even if it’s not the Higgs boson particle.
At this point you might be wondering what’s the difference, and why does it even matter? Let’s be honest, this is some seriously complicated science—a discovery that could, you know, potentially change our entire understanding of how the universe works. If you end up shmoozing with particle physicists this weekend, just stick to this script and you’ll be fine:
“Yes, but does it fit The Standard Model?”
The Higgs boson is said to be the last elusive piece of the puzzle in The Standard Model of physics, confirming our understanding of how particles acquire mass and experiences forces. The only question now is whether or not the Higgs boson the CERN scientists have seen is the one that fits in the Standard Model, and not a different model, which seems likely. “I’m confident that it’s a Higgs particle. I don’t need to call it Higgs-like any more,” said Joe Incandela, spokesman for the CMS team at Cern.
“You know, Higgs quit Greenpeace over GMOs.”
Peter Higgs is the British theoretical physicist that was one of the first scientists to theorize the existence of this new particle, the Higgs boson, back in 1964. There were some other physicists that had talked about it too, but Higgs got his name on it.
“It’s still chilly in Geneva.”
CERN is home to the world’s largest and most powerful particle accelerator, the Large Hadron Collider, a giant underground ring that’s almost 17 miles in circumference. Inside the LHC they can smash protons into one another at nearly the speed of light, and the collisions release a very small amount of energy that lasts for a fraction of a second that SOMETIMES contains a Higgs boson. Now you understand why it’s so difficult to be sure.
“Goddamn particle, actually.”
The Higgs boson is often called the “God particle,” but a) Higgs has said that was never the intention of Leon Lederman, whose book popularized the phrase, and b) there is nothing really god-like about it. Yes, it’s important, but more in a this-is-a-fundamental-question-of-physics and not in a THIS IS THE MEANING OF IT ALL way. If your goal is to sound half-way intelligent on this stuff, stick with Higgs boson.
“Zero spin!”
Without it, we’re all just massless, meaningless subatomic specks of dust floating in space (kidding). If it turns out the Higgs boson doesn’t exist, or if there are more than one kind of Higgs bosons, scientists would really have to reevaluate basing assumptions on the The Standard Model of physics—the one we’ve been working off of for the past 40 or so years.
If it is a Higgs boson (which it looks to be!) it would be the first elementary particle with zero spin, which sounds cool more than anything. More importantly though, the existence of the Higgs boson would support the existence of the Higgs field, our rationale for why some particles have mass and others do not. This type of fundamental knowledge is crucial when explaining the existence of stars, planets … humans.
But it’s still not god.
McCann is a contributing graphic designer for Bloomberg Businessweek.